

Photovoltaics Specialisation Syllabus

Contents:

- 1. Cell and Module Technology
- 2. Advanced Cell Design
- 3. Photovoltaic System Technology
- 4. Economics, Policy and Environment

Cell and Module Technology (compulsory / examinable)

Syllabus

Semiconductor Materials

Important semiconductor materials

Conduction theory, E-k curves, energy bandgaps, effective mass, direct and indirect transitions.

Carrier statistics, intrinsic and extrinsic behaviour, mobility, diffusion, scattering. Equilibrium and non-equilibrium behaviour, recombination Optical and thermal properties.

Semiconductor Devices

Important solar cell devices.

P-n junctions, depletion region, derivation of I-V characteristics in the dark. Ideal diode under illumination, optimum bandgap, current and voltage dependence on illumination and temperature.

Loss mechanisms for real diodes, recombination, series and shunt resistance, interface states.

Heterojunctions, Anderson model, current transport models, window layers. Introduction to multijunction concepts.

Material Fabrication Technologies

Purification of silicon, zone refining and gettering, segregation coefficient. Growth of crystalline silicon, Bridgmann, Czochralski and floating zone methods. Epitaxial growth methods, MBE, MOCVD, LPE, VPE.

Thin film deposition methods, evaporation, sputtering, wet chemical, spray pyrolisis, screen printing.

Device Fabrication

Doping, alloying, diffusion and implantation.

Device processing methods.

Deposition of anti-reflection coatings.

Photolithography.

Dry and wet etching.

Surface texturing and passivation techniques.

Laboratories

Semiconductor properties, devices and fabrication

Assessment

Coursework and examination

Learning outcomes

The student will

- be able to discuss the properties of semiconductors which are important for PV applications.
- be able to describe the important PV devices.
- have a good understanding of semiconductors in equilibrium and nonequilibrium situations, homojunction and heterojunction solar cell devices and the differences between ideal and real devices.
- understand the need for purity and minimisation of crystal imperfections for making high performance devices.
- be able to describe and discuss the pros and cons of bulk crystal growth, epitaxial and low cost thin film deposition methods.
- at an introductory level outline how to make important solar cell devices.

Advanced Cell Design

(compulsory / examinable)

Syllabus

Cell and Module Concepts

Flat plate and concentrator cells and modules.

Multijunction concepts.

Overview of cell types and technology status.

Advanced Devices

High efficiency crystalline silicon designs.

Passivation, light trapping and contact structures.

Cost reduction strategies.

III-V devices, high concentration, quantum wells devices, multijunction structures, thermophotovoltaic devices.

Thin film solar cells, structures and fabrication, novel device designs.

Characterisation Methods

Material characterisation, X-ray diffraction, optical characterisation, minority carrier lifetime and diffusion length measurement.

Cell measurement, solar simulation, conversion efficiency and spectral response. I-V-T and C-V-f measurements.

Measurement and performance standards.

Laboratories

Device operation and characterisation

Assessment

Literature review for a chosen cell category and examination.

Learning outcomes

Students will be able to:

- discuss the principles of operation and design of PV devices.
- discuss the main fabrication methods for advanced PV devices.
- describe and use the main characterisation methods used with semiconductor materials and PV devices.

Photovoltaic System Technology

(compulsory / examinable)

Syllabus

Basic system design

PV arrays, electrical connections and wiring issues BOS components

Overview of stand alone and grid connected systems

System sizing

Stand alone systems

Applications

Performance assessment

Standards and regulations

Grid connected systems

Inverter systems, electrical supply issues

Grid connection regulations

Harmonic content, reactive power, wiring issues

Design of large scale systems

Building integrated systems

System design and sizing

Energy in buildings, building components

Installation and operation

Concentrator systems

Design of concentrator systems

Operation and maintenance

Monitoring and performance

Monitoring specifications

Yield and performance ratio, MTBF

Operational issues and maintenance

Standards for construction and operation

Regulations governing system design and operation

Health and safety issues

Space systems

Array configurations

Quality control and assessment

Design of systems

Assessment

Design project and examination

Learning outcomes

The student will:

- Be able to complete basic design of both stand alone and grid connected systems
- Understand the requirements for construction, electrical connection and operation of systems
- Have experience of analysing system performance

Economics, Policy and Environment

(compulsory / examinable)

Syllabus

Economic Analysis

Economic theory

Production economics

Subsidies and tariff issues

Financing mechanisms

Policy Issues

Market development

Government policies

Climate change issues

Environmental Impact Assessment

Module production

Energy analysis

Life cycle analysis

CO₂ emissions

Assessment

Dissertation

Learning outcomes

The students will:

- Have an understanding of the economics of photovoltaic systems and their comparison with other electricity sources
- Be able to perform an environmental impact assessment or energy analysis for a PV system